Discover all the latest about our products, technology, and Google culture on our official blog. Netzwerk is the German word for 'network'. It may also refer to: Netzwerk, a 1969 German film; Netzwerk, an album by the electronic duo Klangkarussell; Netzwerk (Falls Like Rain), a song by Klangkarussell released in the album Netzwerk Netzwerk (band), an Italian Eurodance band See also. Network (disambiguation). Netzwerke 3 Review in der JUICE's profile including the latest music, albums, songs, music videos and more updates. H-Net's Network on the study of the German diaspora and intercultural transfer between German and non-German societies from the 17th century to the present. View Academics in neurale Netzwerke on

What is virtual networking?

Get the latest edition of Next-Gen Virtualization for Dummies

Virtual networking enables communication between multiple computers, virtual machines (VMs), virtual servers, or other devices across different office and data center locations. While physical networking connects computers through cabling and other hardware, virtual networking extends these capabilities by using software management to connect computers and servers over the Internet. It uses virtualized versions of traditional network tools, like switches and network adapters, allowing for more efficient routing and easier network configuration changes.

Virtual networking enables devices across many locations to function with the same capabilities as a traditional physical network. This allows for data centers to stretch across different physical locations, and gives network administrators new and more efficient options, like the ability to easily modify the network as needs change, without having to switch out or buy more hardware; greater flexibility in provisioning the network to specific needs and applications; and the capacity to move workloads across the network infrastructure without compromising service, security, and availability.

How does virtual networking work?

A virtual network connects virtual machines and devices, no matter their location, using software. In a physical network, layer 2 and 3 functions of the OSI model happen within physical switches and routers. Plus, physical network interface cards (NIC) and network adapters are used to connect computers and servers to the network. Virtual networking shifts these and other activities to software. A software application, called a virtual switch or vSwitch, controls and directs communication between the existing physical network and virtual parts of the network, like virtual machines. And a virtual network adapter allows computers and VMs to connect to a network, including making it possible for all the machines on a local area network (LAN) to connect to a larger network.

In a physical network, LANs are created to connect multiple devices to shared resources, like network storage, usually through Ethernet cables or Wi-Fi. But virtual networking creates the possibility for virtual LANs (VLANs), where the grouping is configured through software. This means that computers connected to different network switches can behave as if they’re all connected to the same one, and, conversely, computers that share cabling can be kept on separate networks, rather than physically connecting machines using cabling equipment and hardware.

Virtual networking delivers more centralized management and simplified network management. Disparate parts of the network can be accessed remotely for needed updates and changes, or even testing, making network management cheaper and easier.

Virtual networking is the foundation for cloud architectures and applications, since it enables the ability to access, connect, secure, and modify cloud resources.

Advantages of virtual networking

Virtual networking delivers a variety of business benefits, from lowering capital expenditures and maintenance costs to easily segmenting networks. Specifically, a virtual network:

  • Streamlines the amount of network hardware (cabling, switches, etc.) through shifting many functions to software
  • Reduces the cost and complexity of managing network hardware and software through centralized control
  • Offers more flexible options for network routing structure and configuration, including easier options for segmenting and subdividing the network
  • Improves control over network traffic with more fine-grained options, like configuring firewalls at the virtual NIC level
  • Increases IT productivity through remote and automated service activation and performance testing
  • Boosts business scalability and flexibility by enabling virtual upgrades, automated configuring, and modular changes to network appliances and applications

Examples of virtual networking

One example of virtual networking is a virtual private network (VPN), which creates a secure connection between one network and another over the Internet. VPNs allow employees to connect to business networks when working remotely or at home, and also are commonly used to get around Internet censorship and prevent browser history to be visible on public Wi-Fi networks.

Another example of virtual networking is a virtual local area network (VLAN). A VLAN is a subgroup of a network, which combines multiple network devices into one grouping, or domain, and partitions it off from the rest. VLANs improve network speed and performance by more efficiently routing traffic across these subgroups or domains. VLANs also allow significantly more control over network devices and traffic. Isolating certain data within a separate VLAN provides additional security benefits, especially to large networks, by making it more difficult for unauthorized monitoring or interference with the network. VLANs also eliminate the need to add new cabling or make big changes to network infrastructure.

A virtual extensible LAN (VXLAN) is another example of virtual networking. Beyond simply dividing a network into subgroups, VXLANs can virtualize an entire network, providing large-scale overly network and segmentation capabilities. VXLANs greatly increase the capacity and scalability of virtual networks—this is especially important without today’s complex cloud architectures.

Related Topics
Network Virtualization
VDI Security
Virtual Infrastructure
Network Functions Virtualization

VMware Virtual Networking related products, solutions, and resources

What is a Network?

A network consists of two or more computers that are linked in order to share resources (such as printers and CDs), exchange files, or allow electronic communications. The computers on a network may be linked through cables, telephone lines, radio waves, satellites, or infrared light beams.

Two very common types of networks include:

You may also see references to a Metropolitan Area Networks (MAN), a Wireless LAN (WLAN), or a Wireless WAN (WWAN).

Local Area Network


A Local Area Network (LAN) is a network that is confined to a relatively small area. It is generally limited to a geographic area such as a writing lab, school, or building.

Computers connected to a network are broadly categorized as servers or workstations. Servers are generally not used by humans directly, but rather run continuously to provide 'services' to the other computers (and their human users) on the network. Services provided can include printing and faxing, software hosting, file storage and sharing, messaging, data storage and retrieval, complete access control (security) for the network's resources, and many others.

Workstations are called such because they typically do have a human user which interacts with the network through them. Workstations were traditionally considered a desktop, consisting of a computer, keyboard, display, and mouse, or a laptop, with with integrated keyboard, display, and touchpad. With the advent of the tablet computer, and the touch screen devices such as iPad and iPhone, our definition of workstation is quickly evolving to include those devices, because of their ability to interact with the network and utilize network services.

Netzwerkerkennung Einschalten

Servers tend to be more powerful than workstations, although configurations are guided by needs. For example, a group of servers might be located in a secure area, away from humans, and only accessed through the network. In such cases, it would be common for the servers to operate without a dedicated display or keyboard. However, the size and speed of the server's processor(s), hard drive, and main memory might add dramatically to the cost of the system. On the other hand, a workstation might not need as much storage or working memory, but might require an expensive display to accommodate the needs of its user. Every computer on a network should be appropriately configured for its use.

On a single LAN, computers and servers may be connected by cables or wirelessly. Wireless access to a wired network is made possible by wireless access points (WAPs). These WAP devices provide a bridge between computers and networks. A typical WAP might have the theoretical capacity to connect hundreds or even thousands of wireless users to a network, although practical capacity might be far less.

Nearly always servers will be connected by cables to the network, because the cable connections remain the fastest. Workstations which are stationary (desktops) are also usually connected by a cable to the network, although the cost of wireless adapters has dropped to the point that, when installing workstations in an existing facility with inadequate wiring, it can be easier and less expensive to use wireless for a desktop. Baybayin fonts.

See the Topology, Cabling, and Hardware sections of this tutorial for more information on the configuration of a LAN.

Wide Area Network

Wide Area Networks (WANs) connect networks in larger geographic areas, such as Florida, the United States, or the world. Dedicated transoceanic cabling or satellite uplinks may be used to connect this type of global network.

Using a WAN, schools in Florida can communicate with places like Tokyo in a matter of seconds, without paying enormous phone bills. Two users a half-world apart with workstations equipped with microphones and a webcams might teleconference in real time. A WAN is complicated. It uses multiplexers, bridges, and routers to connect local and metropolitan networks to global communications networks like the Internet. To users, however, a WAN will not appear to be much different than a LAN.


Advantages of Installing a School Network


User access control.
Modern networks almost always have one or more servers which allows centralized management for users and for network resources to which they have access. User credentials on a privately-owned and operated network may be as simple as a user name and password, but with ever-increasing attention to computing security issues, these servers are critical to ensuring that sensitive information is only available to authorized users.
Information storing and sharing.
Computers allow users to create and manipulate information. Information takes on a life of its own on a network. The network provides both a place to store the information and mechanisms to share that information with other network users.
Administrators, instructors, and even students and guests can be connected using the campus network.
The school can provide services, such as registration, school directories, course schedules, access to research, and email accounts, and many others. (Remember, network services are generally provided by servers).
The school can provide network users with access to the internet, via an internet gateway.
Computing resources.
The school can provide access to special purpose computing devices which individual users would not normally own. For example, a school network might have high-speed high quality printers strategically located around a campus for instructor or student use.
Flexible Access.
School networks allow students to access their information from connected devices throughout the school. Students can begin an assignment in their classroom, save part of it on a public access area of the network, then go to the media center after school to finish their work. Students can also work cooperatively through the network.
Workgroup Computing.
Collaborative software allows many users to work on a document or project concurrently. For example, educators located at various schools within a county could simultaneously contribute their ideas about new curriculum standards to the same document, spreadsheets, or website.
Expensive to Install.
Large campus networks can carry hefty price tags. Cabling, network cards, routers, bridges, firewalls, wireless access points, and software can get expensive, and the installation would certainly require the services of technicians. But, with the ease of setup of home networks, a simple network with internet access can be setup for a small campus in an afternoon.
Requires Administrative Time.
Proper maintenance of a network requires considerable time and expertise. Many schools have installed a network, only to find that they did not budget for the necessary administrative support.
Servers Fail.
Although a network server is no more susceptible to failure than any other computer, when the files server 'goes down' the entire network may come to a halt. Good network design practices say that critical network services (provided by servers) should be redundant on the network whenever possible.
Cables May Break.
The Topology chapter presents information about the various configurations of cables. Some of the configurations are designed to minimize the inconvenience of a broken cable; with other configurations, one broken cable can stop the entire network.
Security and compliance.
Network security is expensive. It is also very important. A school network would possibly be subject to more stringent security requirements than a similarly-sized corporate network, because of its likelihood of storing personal and confidential information of network users, the danger of which can be compounded if any network users are minors. A great deal of attention must be paid to network services to ensure all network content is appropriate for the network community it serves.
Coments are closed
Scroll to top